# Carotid Revascularization Procedures: The Rise of TCAR

Caitlin W. Hicks MD, MS, FACS, DFSVS Associate Professor of Surgery Division of Vascular Surgery Johns Hopkins University School of Medicine

#### Michigan Vascular Society: May 17, 2023

### **Disclosures**

- Related: Silk Road Medical
- Unrelated: W.L. Gore, Cook Medical
- Supported by grants from
  - American College of Surgeons
  - NIH/NIDDK
  - Society for Vascular Surgery



Heart and Vascular Institute

### **Cerebrovascular Disease**







2<sup>nd</sup> leading cause of death 15% severely disabling

\$70 billion annually



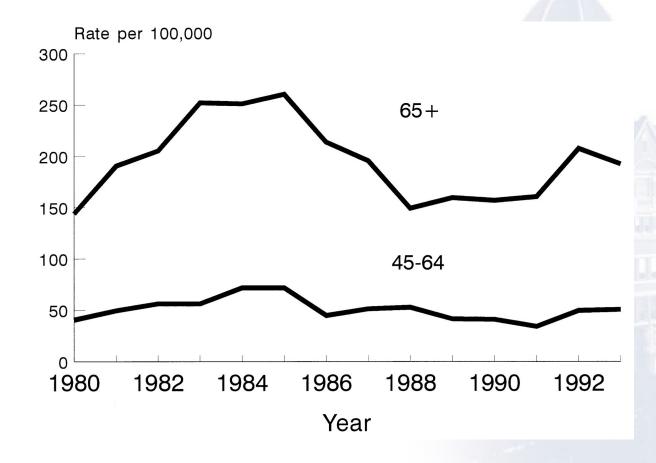
Heart and Vascular Institute

A JOHNS IKOPKINS

### **Evolution of Carotid Revasc**



1990s


1<sup>ST</sup> Successful CEA performed in **1953** Dr. Michael DeBakey



A JOHNS HOPKING



### **Adoption of Carotid Endarterectomy**



Heart and Vascular Institute

Gillum et al. Stroke. 1995 Sep;26(9):1724-8.

A JOH

5

A JOHNS IKOPKINS

### Randomized Controlled Trials CEA vs. Medical Management

- Symptomatic
  - North American Symptomatic Carotid Endarterectomy Trial (NASCET)
  - European Carotid Surgery Trial (ECST)
- Asymptomatic
  - Asymptomatic Carotid Atherosclerosis Trial (ACAS)
  - Asymptomatic Carotid Surgery Trial (ACST)

Heart and Vascular Institute



### **Randomized Trials - Symptomatic** CEA vs. Medical Management

|        | Indication | Periop<br>CVA/Death | Risk<br>Reduction | Annual<br>Risk<br>Reduction | P Value |
|--------|------------|---------------------|-------------------|-----------------------------|---------|
| NASCET | Sx ≥ 70%   | 5.8%                | 16.5% @ 2yr       | 8%                          | <0.001  |
|        | Sx 50-69%  | 6.7%                | 10.1% @ 5yr       | 2%                          | <0.05   |
| ECST   | Sx 70-99%  | 7.5%                | 9.6% @ 5yr        | 2%                          | <0.01   |

Heart and Vascular Institute

JOHNS HOPKINS

Ferguson et al. Stroke 1999 Sep;30(9):1751-8. Lancet 1998 May 9;351(9113):1379-8



# **Randomized Trials - Asymptomatic**

**CEA vs. Medical Management** 

|      | Indication | Periop<br>CVA/Death | Risk<br>Reduction | Annual<br>Risk<br>Reduction | P Value |  |
|------|------------|---------------------|-------------------|-----------------------------|---------|--|
| ACAS | Asx >60%   | 2.3                 | 5.9% @ 5yr        | 1%                          | 0.004   |  |
| ACST | Asx >60%   | 3.1                 | 5.4% @ 5yr        | 1%                          | <0.001  |  |

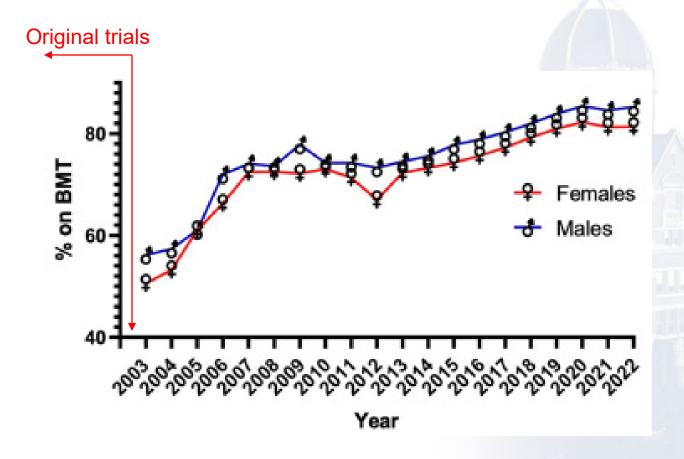
Heart and Vascular Institute

JAMA 1995 May 10;273(18):1421-8 Haliday et al. Lancet 2004 May 8;363(9420):1491-502



DHNS HOPKINS

### **Randomized Trials** CEA vs. Medical Management


- Complications
  - Death
  - Stroke
  - Myocardial infarction
  - Cranial nerve injury
    - Occur in 5-20%
    - 1/3 of deficits are asymptomatic
    - Permanent in 0.5-1%

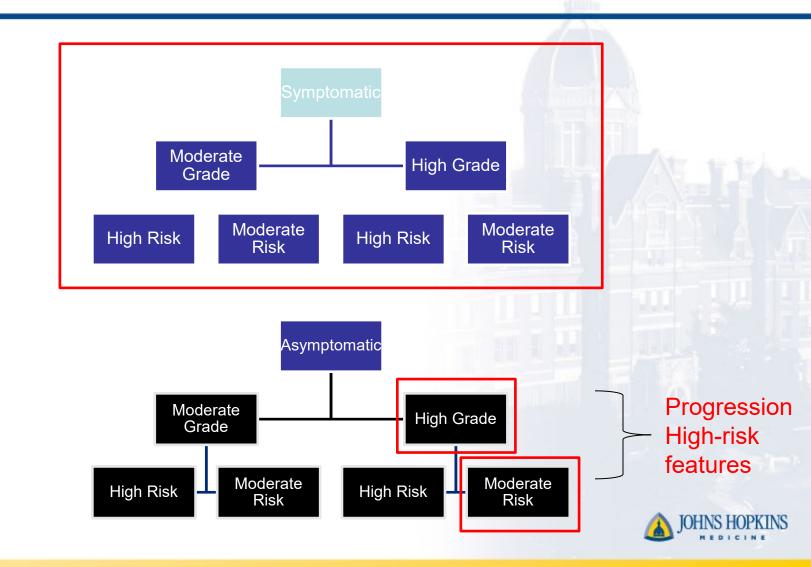


Heart and Vascular Institute

OHIS HOPKING

## **Medical Management has Changed**




Heart and Vascular Institute

A JOHNS HOPKINS

Bose et al. J Vasc Surg. 2023 Mar;77(3):786-794.e2



### When To Operate



Heart and Vascular Institute

### **CREST II**

- Randomized 2 arm study
  - Med Tx vs. CEA
  - Med Tx vs. TF-CAS
- Must be asymptomatic, >70% stenosis
- Primary endpoint
  - Any stroke/death during periprocedural period
  - Any stroke during 4 year f/u
- Meant to redefine therapy for asymptomatic disease

Heart and Vascular Institute



### **Evolution of Carotid Revasc**



**Carotid Stenting** 1990s

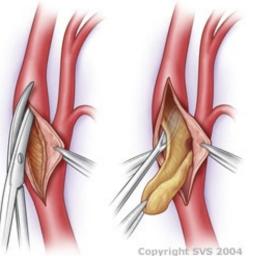
From 1994

**Trans Femoral** 

- CREST
- SAPPHIRE

1<sup>ST</sup> Successful CEA performed in 1953 Dr. Michael DeBakey






### **Carotid Revascularization**

Carotid Endarterectomy (CEA)

Transfemoral Carotid Stenting (TFCAS)

### TransCarotid Artery Revascularization (TCAR)



Filter

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.





Heart and Vascular Institute

### Randomized Trials CEA vs. TF-CAS

- EVA-3S
  - Std F
  - SPACE
    - Std F 1. Indication
- ICSS 2. Risk
  - Std F CREST 3. Embolic Protection Device

Variation

- Std F 4. Outcomes

Sapphire

High Risk: Sx >50%, Asx >80% with EPD

Heart and Vascular Institute



## **ICSS - Symptomatic**

 Randomized Controlled Trial
 > Lancet. 2015 Feb 7;385(9967):529-38.

 doi: 10.1016/S0140-6736(14)61184-3. Epub 2014 Oct 14.

#### Long-term outcomes after stenting versus endarterectomy for treatment of symptomatic carotid stenosis: the International Carotid Stenting Study (ICSS) randomised trial

Leo H Bonati <sup>1</sup>, Joanna Dobson <sup>2</sup>, Roland L Featherstone <sup>3</sup>, Jörg Ederle <sup>3</sup>, H Bart van der Worp <sup>4</sup>, Gert J de Borst <sup>5</sup>, Willem P Th M Mali <sup>6</sup>, Jonathan D Beard <sup>7</sup>, Trevor Cleveland <sup>7</sup>, Stefan T Engelter <sup>8</sup>, Philippe A Lyrer <sup>8</sup>, Gary A Ford <sup>9</sup>, Paul J Dorman <sup>10</sup>, Martin M Brown <sup>11</sup>, International Carotid Stenting Study investigators

- Symptomatic stenosis <u>>50%</u>
- Life expectancy >2 years



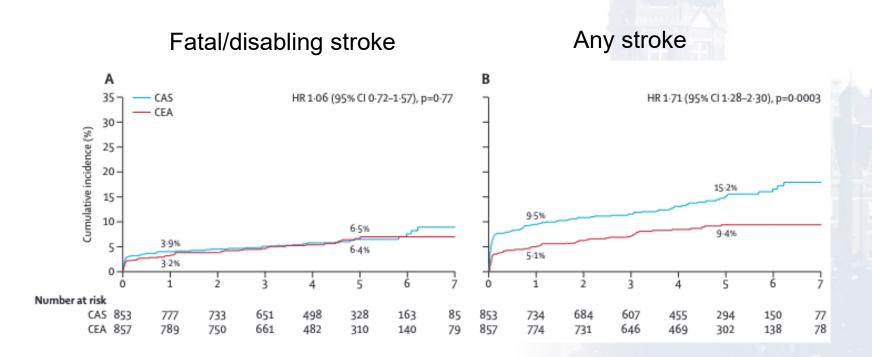
Heart and Vascular Institute

DHINS HOPKINS

### **ICSS - Symptomatic**

|                                                                                       | Stenting (n=853)     |                                 | Endarterect                     | tomy (n=857)         | Hazard ratio*<br>(95% Cl)       |                                 | Absolute risk difference (95% CI) |                    |                     |
|---------------------------------------------------------------------------------------|----------------------|---------------------------------|---------------------------------|----------------------|---------------------------------|---------------------------------|-----------------------------------|--------------------|---------------------|
|                                                                                       | Number of<br>events* | Cumulative<br>1-year risk (SE)† | Cumulative<br>5-year risk (SE)† | Number of<br>events* | Cumulative<br>1-year risk (SE)† | Cumulative<br>5-year risk (SE)† |                                   | At 1 year          | At 5 years          |
| Fatal or disabling<br>stroke (primary<br>outcome measure)                             | 52                   | 3·9% (0-7)                      | 6.4% (0.9)                      | 49                   | 3-2% (0-6)                      | 6.5% (1-0)                      | 1·06 (0·72 to 1·57)               | 0-7% (-1-0 to 2-5) | -0·2% (-2·8 to 2·5) |
| Any stroke                                                                            | 119                  | 9.5% (1.0)                      | 15·2% (1·4)                     | 72                   | 5·1% (0·8)                      | 9.4% (1.1)                      | 1·71 (1·28 to 2·30)‡              | 4·4% (1·9 to 6·9)  | 5·8% (2·4 to 9·3)   |
| Procedural stroke or<br>procedural death or<br>ipsilateral stroke<br>during follow-up | 95                   | 9-0% (1-0)                      | 11-8% (1-2)                     | 57                   | 4-7% (0-7)                      | 7·2% (0·9)                      | 1-72 (1-24 to 2-39)§              | 4-2% (1-9 to 6-6)  | 4·6% (1·6 to 7·6)   |
| All-cause death                                                                       | 153                  | 4.9% (0.7)                      | 17·4% (1·5)                     | 129                  | 2-3% (0-5)                      | 17·2% (1·5)                     | 1·17 (0·92 to 1·48)               | 2-6% (0-8 to 4-4)  | 0-2% (-4-0 to 4-4)  |
|                                                                                       |                      |                                 |                                 |                      |                                 |                                 |                                   |                    |                     |

\*Calculated as the first relevant event between randomisation and the end of follow-up. †Calculated from randomisation onwards. \$p<0.01. \$p<0.01.


Table 2: Intention-to-treat analysis of cumulative risks and hazard ratios of main outcome events

Heart and Vascular Institute

Bonati LH et al. Lancet. 2015 Feb 7;385(9967):529-38.



### **ICSS - Symptomatic**



Heart and Vascular Institute





Randomized Controlled Trial > N Engl J Med. 2010 Jul 1;363(1):11-23. doi: 10.1056/NEJMoa0912321. Epub 2010 May 26.

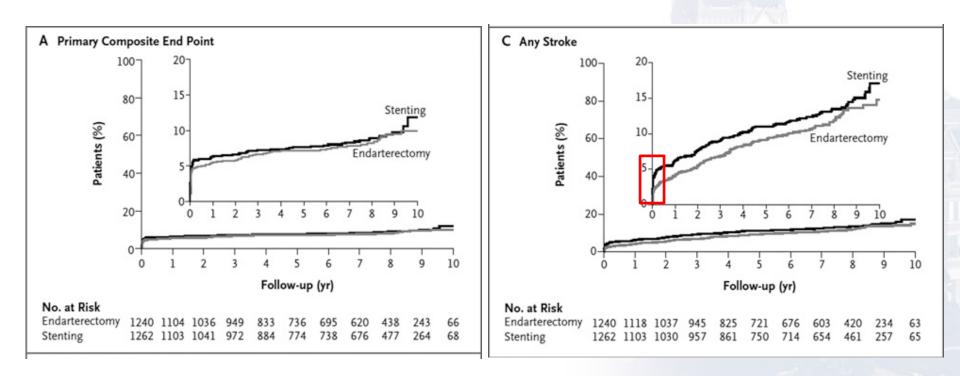
### Stenting versus endarterectomy for treatment of carotid-artery stenosis

Thomas G Brott <sup>1</sup>, Robert W Hobson 2nd, George Howard, Gary S Roubin, Wayne M Clark, William Brooks, Ariane Mackey, Michael D Hill, Pierre P Leimgruber, Alice J Sheffet, Virginia J Howard, Wesley S Moore, Jenifer H Voeks, L Nelson Hopkins, Donald E Cutlip, David J Cohen, Jeffrey J Popma, Robert D Ferguson, Stanley N Cohen, Joseph L Blackshear, Frank L Silver, J P Mohr, Brajesh K Lal, James F Meschia, CREST Investigators

- Symptomatic patients with stenosis <u>></u>50%
- Asymptomatic patients with stenosis <u>>60%</u>
- Surgeons performed >12 procedures per year & complications/death <3% among asymptomatic patients and <5% among symptomatic patients



Heart and Vascular Institute



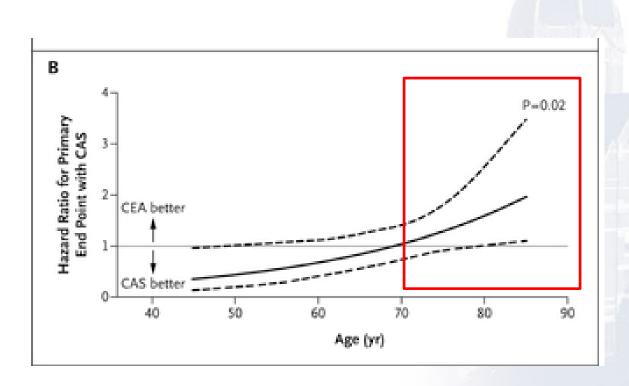

| End Point                                                                                                                 |                         |              | Periprocedural Period                                   |                                             |         |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|---------------------------------------------------------|---------------------------------------------|---------|
|                                                                                                                           | CAS (N=1262)            | CEA (N=1240) | Absolute Treatment<br>Effect of CAS vs. CEA<br>(95% CI) | Hazard Ratio for<br>CAS vs. CEA<br>(95% CI) | P Value |
|                                                                                                                           | no. of patients (% ±SE) |              | percentage points                                       |                                             |         |
| Death                                                                                                                     | 9 (0.7±0.2)             | 4 (0.3±0.2)  | 0.4 (-0.2 to 1.0)                                       | 2.25 (0.69 to 7.30)†                        | 0.18†   |
| Stroke                                                                                                                    |                         |              |                                                         |                                             |         |
| Any                                                                                                                       | 52 (4.1±0.6)            | 29 (2.3±0.4) | 1.8 (0.4 to 3.2)                                        | 1.79 (1.14 to 2.82)                         | 0.01    |
| Major ipsilateral                                                                                                         | 11 (0.9±0.3)            | 4 (0.3±0.2)  | 0.5 (-0.1 to 1.2)                                       | 2.67 (0.85 to 8.40)                         | 0.09    |
| Major nonipsilateral‡                                                                                                     | 0                       | 4 (0.3±0.2)  | NA                                                      | NA                                          | NA      |
| Minor ipsilateral                                                                                                         | 37 (2.9±0.5)            | 17 (1.4±0.3) | 1.6 (0.4 to 2.7)                                        | 2.16 (1.22 to 3.83)                         | 0.009   |
| Minor nonipsilateral                                                                                                      | 4 (0.3±0.2)             | 4 (0.3±0.2)  | 0.0 (-0.4 to 0.4)                                       | 1.02 (0.25 to 4.07)                         | 0.98†   |
| Myocardial infarction                                                                                                     | 14 (1.1±0.3)            | 28 (2.3±0.4) | -1.1 (-2.2 to -0.1)                                     | 0.50 (0.26 to 0.94)                         | 0.03    |
| Any periprocedural stroke or postprocedural<br>ipsilateral stroke                                                         | 52 (4.1±0.6)            | 29 (2.3±0.4) | 1.8 (0.4 to 3.2)                                        | 1.79 (1.14 to 2.82)                         | 0.01    |
| Major stroke                                                                                                              | 11 (0.9±0.3)            | 8 (0.6±0.2)  | 0.2 (-0.5 to 0.9)                                       | 1.35 (0.54 to 3.36)                         | 0.52    |
| Minor stroke                                                                                                              | 41 (3.2±0.5)            | 21 (1.7±0.4) | 1.6 (0.3 to 2.8)                                        | 1.95 (1.15 to 3.30)                         | 0.01    |
| Any periprocedural stroke or death or post-<br>procedural ipsilateral stroke                                              | 55 (4.4±0.6)            | 29 (2.3±0.4) | 2.0 (0.6 to 3.4)                                        | 1.90 (1.21 to 2.98)                         | 0.005   |
| Primary end point (any periprocedural stroke,<br>myocardial infarction, or death or<br>postprocedural ipsilateral stroke) | 66 (5.2±0.6)            | 56 (4.5±0.6) | 0.7 (-1.0 to 2.4)                                       | 1.18 (0.82 to 1.68)                         | 0.38    |










#### Heart and Vascular Institute

OHINS HOPKINS

Brott et al. N Engl J Med. 2016 Mar 17; 374(11): 1021–1031.

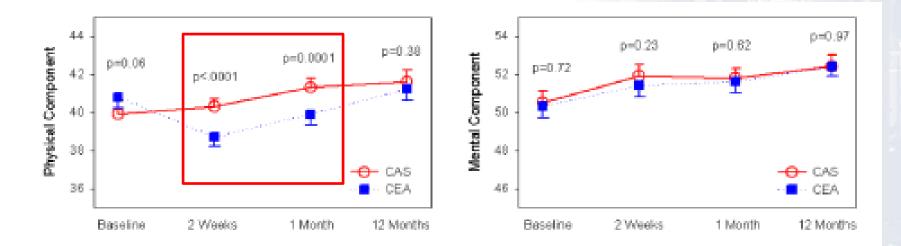


### **CREST – Age Interaction**



Heart and Vascular Institute

A JOHNS IKOPAINS




Brott et al. N Engl J Med. 2010 Jul 1;363(1):11-23.

### **CREST - HRQOL**

Health-Related Quality of Life after Carotid Stenting versus Carotid Endarterectomy: Results from CREST (Carotid Revascularization Endarterectomy Versus Stenting Trial)

David J. Cohen, MD, MSc<sup>1</sup>, Joshua M. Stolker, MD<sup>2</sup>, Kaijun Wang, PhD<sup>1</sup>, Elizabeth A. Magnuson, ScD<sup>1</sup>, Wayne M. Clark, MD<sup>3</sup>, Bart M. Demaerschalk, MD, MSc<sup>4</sup>, Albert D. Sam II, MD<sup>5</sup>, James R. Elmore, MD<sup>6</sup>, Fred A. Weaver, MD, MMM<sup>7</sup>, Herbert D. Aronow, MD, MPH<sup>8</sup>, Larry B. Goldstein, MD<sup>9</sup>, Gary S. Roubin, MD, PhD<sup>10</sup>, George Howard, DrPH<sup>11</sup>, and Thomas G. Brott, MD<sup>12</sup> on behalf of the CREST Investigators



Heart and Vascular Institute

JAm Coll Cardiol. 2011 October 4; 58(15): 1557-1565.



A JOHNS IKOPKINS

Clinical Trial > N Engl J Med. 2004 Oct 7;351(15):1493-501. doi: 10.1056/NEJMoa040127.

#### Protected carotid-artery stenting versus endarterectomy in high-risk patients

Jay S Yadav<sup>1</sup>, Mark H Wholey, Richard E Kuntz, Pierre Fayad, Barry T Katzen, Gregory J Mishkel, Tanvir K Bajwa, Patrick Whitlow, Neil E Strickman, Michael R Jaff, Jeffrey J Popma, David B Snead, Donald E Cutlip, Brian G Firth, Kenneth Ouriel,

Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy Investigators

Table 1. Major Eligibility Criteria. Inclusion criteria General criteria Age ≥18 yr Unilateral or bilateral atherosclerotic or restenotic lesions in native carotid arteries Symptoms plus stenosis of more than 50 percent of the luminal diameter No symptoms plus stenosis of more than 80 percent of the luminal diameter Criteria for high risk (at least one factor required) Clinically significant cardiac disease (congestive heart failure, abnormal stress test, or need for open-heart surgery) Severe pulmonary disease Contralateral carotid occlusion Contralateral laryngeal-nerve palsy Previous radical neck surgery or radiation therapy to the neck Recurrent stenosis after endarterectomy Age >80 yr Exclusion criteria Ischemic stroke within previous 48 hr Presence of intraluminal thrombus Total occlusion of target vessel Vascular disease precluding use of catheter-based techniques Intracranial aneurysm >9 mm in diameter Need for more than two stents History of bleeding disorder Percutaneous or surgical intervention planned within next 30 days Life expectancy <1 yr Ostial lesion of common carotid artery or brachiocephalic artery



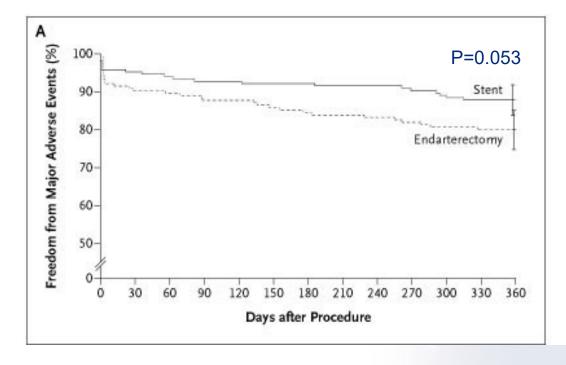
Heart and Vascular Institute

| Event                                   | Inter            | ntion-to-Treat Anal       | ysis    | Actual Treatment Analysis |                           |         |
|-----------------------------------------|------------------|---------------------------|---------|---------------------------|---------------------------|---------|
|                                         | Stent<br>(N=167) | Endarterectomy<br>(N=167) | P Value | Stent<br>(N =159)         | Endarterectomy<br>(N=151) | P Value |
|                                         | no. (%)          |                           |         |                           |                           |         |
| Death                                   | 2 (1.2)          | 4 (2.5)                   | 0.39    | 1 (0.6)                   | 3 (2.0)                   | 0.29    |
| Stroke                                  | 6 (3.6)          | 5 (3.1)                   | 0.77    | 5 (3.1)                   | 5 (3.3)                   | 0.94    |
| Major ipsilateral                       | 1 (0.6)          | 2 (1.2)                   | 0.55    | 0                         | 2 (1.3)                   | 0.15    |
| Major nonipsilateral                    | 1 (0.6)          | 1 (0.6)                   | 1.00    | 1 (0.6)                   | 1 (0.7)                   | 0.97    |
| Minor ipsilateral                       | 4 (2.4)          | 1 (0.6)                   | 0.18    | 4 (2.5)                   | 1 (0.7)                   | 0.20    |
| Minor nonipsilateral                    | 1 (0.6)          | 1 (0.6)                   | 1.00    | 1 (0.6)                   | 1 (0.7)                   | 0.97    |
| Myocardial infarction                   | 4 (2.4)          | 10 (6.1)                  | 0.10    | 3 (1.9)                   | 10 (6.6)                  | 0.04    |
| Q-wave                                  | 0                | 2 (1.2)                   | 0.15    | 0                         | 2 (1.3)                   | 0.15    |
| Non-Q-wave                              | 4 (2.4)          | 8 (4.9)                   | 0.23    | 3 (1.9)                   | 8 (5.3)                   | 0.11    |
| Death, stroke, or myocardial infarction | 8 (4.8)          | 16 (9.8)                  | 0.09    | 7 (4.4)                   | 15 (9.9)                  | 0.06    |
| Major vascular complications            | 2 (1.2)          | 1 (0.6)                   | 0.57    | 2 (1.3)                   | 1 (0.7)                   | 0.60    |

Heart and Vascular Institute

JOHNS HOPKINS

Yadav JS et al. N Engl J Med. 2004 Oct 7;351(15):1493-501




| Event                                                                                                                                                             | Inter               | ntion-to-Treat Anal | ysis    | Actu      | al-Treatment Anal         | ysis    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------|-----------|---------------------------|---------|
|                                                                                                                                                                   | Stenting<br>(N=167) | (N=167)             | P Value | (N=159)   | Endarterectomy<br>(N=151) | P Value |
|                                                                                                                                                                   |                     | no. (%)             |         |           | no. (%)                   |         |
| Death                                                                                                                                                             | 12 (7.4)            | 21 (13.5)           | 0.08    | 11 (7.0)  | 19 (12.9)                 | 0.08    |
| Stroke                                                                                                                                                            | 10 (6.2)            | 12 (7.9)            | 0.60    | 9 (5.8)   | 11 (7.7)                  | 0.52    |
| Major ipsilateral                                                                                                                                                 | 1 (0.6)             | 5 (3.3)             | 0.09    | 0         | 5 (3.5)                   | 0.02    |
| Major nonipsilateral                                                                                                                                              | 1 (0.6)             | 2 (1.4)             | 0.53    | 1 (0.6)   | 1 (0.7)                   | 0.97    |
| Minor ipsilateral                                                                                                                                                 | 6 (3.7)             | 3 (2.0)             | 0.34    | 6 (3.8)   | 3 (2.2)                   | 0.37    |
| Minor nonipsilateral                                                                                                                                              | 3 (1.9)             | 4 (2.7)             | 0.64    | 3 (2.0)   | 3 (2.1)                   | 0.89    |
| Myocardial infarction                                                                                                                                             | 5 (3.0)             | 12 (7.5)            | 0.07    | 4 (2.5)   | 12 (8.1)                  | 0.03    |
| Q-wave                                                                                                                                                            | 0                   | 2 (1.2)             | 0.15    | 0         | 2 (1.3)                   | 0.15    |
| Non-Q-wave                                                                                                                                                        | 5 (3.0)             | 10 (6.2)            | 0.17    | 4 (2.5)   | 10 (6.7)                  | 0.08    |
| Cranial-nerve palsy                                                                                                                                               | 0                   | 8 (4.9)             | 0.004   | 0         | 8 (5.3)                   | 0.003   |
| Target-vessel revascularization                                                                                                                                   | 1 (0.6)             | 6 (4.3)             | 0.04    | 1 (0.7)   | 6 (4.6)                   | 0.04    |
| Conventional end point (stroke or death<br>at 30 days plus ipsilateral stroke<br>or death from neurologic causes<br>within 31 days to 1 yr)                       | 9 (5.5)             | 13 (8.4)            | 0.36    | 8 (5.1)   | 11 (7.5)                  | 0.40    |
| Primary end point (death, stroke, or<br>myocardial infarction at 30 days<br>plus ipsilateral stroke or death<br>from neurologic causes within<br>31 days to 1 yr) | 20 (12.2)           | 32 (20.1)           | 0.05    | 19 (12.0) | 30 (20.1)                 | 0.05    |

Heart and Vascular Institute

Yadav JS et al. N Engl J Med. 2004 Oct 7;351(15):1493-501





Heart and Vascular Institute

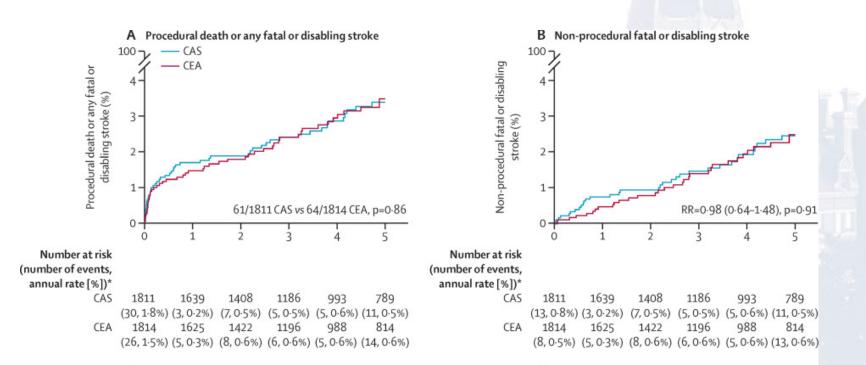
Yadav JS et al. N Engl J Med. 2004 Oct 7;351(15):1493-501



A JOHNS IKOPAINS

## **Current CMS Coverage for TFCAS**

#### ONE risk factor qualifies patient for CMS high surgical risk status


- Prior head/neck surgery or irradiation
- Restenosis post CEA
- Contralateral occlusion
- Surgically inaccessible lesion
- Severe tandem lesions
- Bilateral stenosis requiring treatment
- Cervical spine immobility
- Uncontrolled diabetes
- LVEF <30%
- Chronic renal insufficiency (Creatinine ≥2.5 mg/dl)

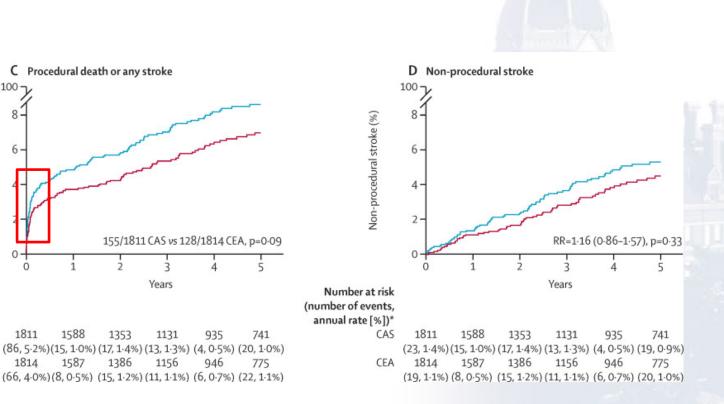
- Need for open heart surgery
- MI >72hr & <6 weeks prior to procedure
- Permanent contralateral cranial nerve injury
- Severe pulmonary disease
- >2 diseased coronaries with ≥70% stenosis
- CHF with NYHA Class III or IV
- Need for major surgery (including vascular)
- Unstable angina
- Abnormal stress test
- Laryngeal palsy or laryngectomy
- HSR, Symptomatic >50% stenosis
   HSR, Asymptomatic ≥80% stenosis



Heart and Vascular Institute






Heart and Vascular Institute

Halliday et al. 2021 Sep 18;398(10305):1065-1073



DHINS HOPKINS







100 -

8

6.

0 0

1811

1814

1

1588

1587

Procedural death or any stroke (%)

Number at risk

(number of events,

annual rate [%])\*

CAS

CEA

Heart and Vascular Institute

Halliday et al. 2021 Sep 18;398(10305):1065-1073

## **CMS NCD for Carotid Stenting**

June 2, 2022

#### VIA ELECTRONIC MAIL TO NCDREQUEST@CMS.HHS.GOV

Tamara Syrek Jensen, Director Joseph Chin, Deputy Director Coverage and Analysis Group Centers for Medicare & Medicaid Services 7500 Security Blvd. Baltimore, Maryland 21244

CMS opened the NCD for comments 01/12/2023

#### **RE:** Formal Request for Reconsideration of NCD 20.7

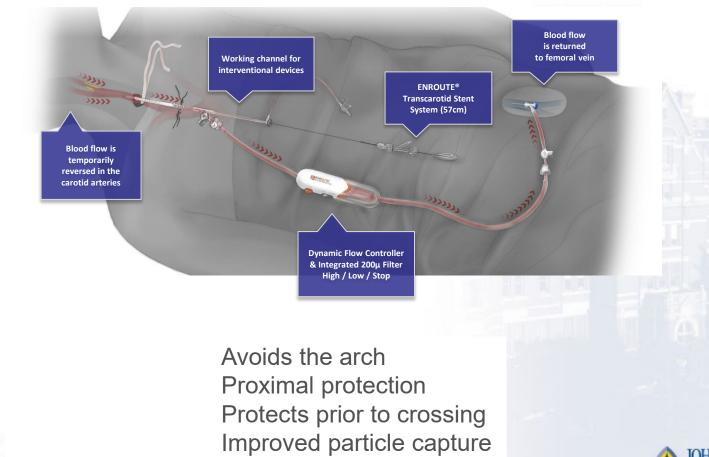
Dear Ms. Syrek Jensen and Dr. Chin:

On behalf of the Multispecialty Carotid Alliance (MSCA), we formally request a reconsideration of National Coverage Determination (NCD) 20.7: Percutaneous Transluminal Angioplasty (PTA) that provides coverage for carotid artery stenting (CAS), with the most recent version effective January 1, 2013. The associated National Coverage Analysis is CAG-00085R7: Percutaneous Transluminal Angioplasty (PTA) of the Carotid Artery Concurrent with Stenting, last updated in December 2009.

Heart and Vascular Institute



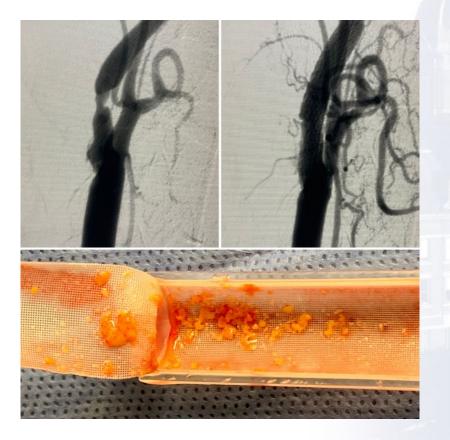
## What About TCAR?


### **Limitations of CEA**

- CNI Risk
- MI Risk
- Incision length (cosmesis)
- General Anesthesia
- Procedure time
- Length of Stay
- Bleeding Risk

Heart and Vascular Institute



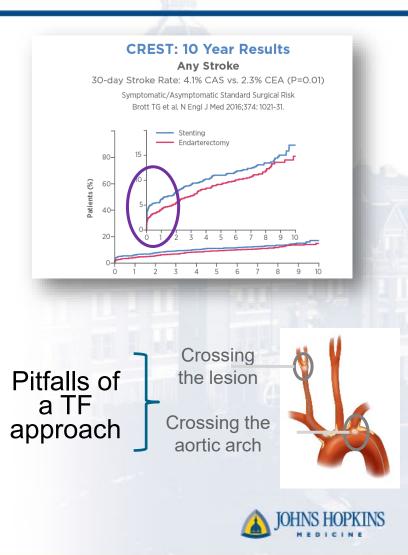

## **Proximal Protection with Flow Reversal**



Heart and Vascular Institute

A JOHNS HOPKINS

### **Proximal Protection with Flow Reversal**




Heart and Vascular Institute



## **Limitations of TF-CAS**

- Previous efforts to move to a less invasive procedure have not been successful
- TCAR is different
  - Avoids pitfalls experienced during TF-CAS
  - Practices that have adopted TCAR have seen benefits in overall carotid outcomes

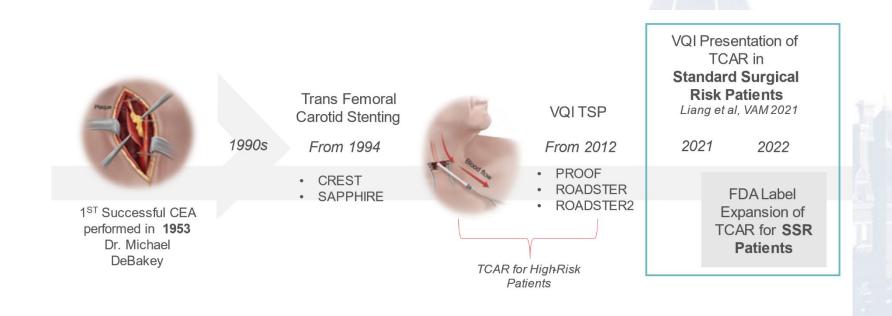


Heart and Vascular Institute

DEINS HOPKING

## The Arch is a Source of Stroke

| Study              | Procedure           | Embolic<br>Protection            | Patients | New Ipsilateral<br>DW-MRI Lesions |
|--------------------|---------------------|----------------------------------|----------|-----------------------------------|
| ICSS <sup>2</sup>  | CEA                 | Clamp, backbleed                 | 107      | 17%                               |
| PROFI <sup>1</sup> | Transfemoral<br>CAS | Proximal occlusion<br>(MoMA)     | 31       | 45%                               |
| ICSS <sup>2</sup>  | Transfemoral<br>CAS | Distal filter<br>(various)       | 51       | 73%                               |
| PROFI <sup>1</sup> | Transfemoral<br>CAS | Distal filter<br>(Emboshield)    | 31       | 87%                               |
| PROOF <sup>3</sup> | TCAR                | Proximal clamp,<br>reversed flow | 56       | 18%                               |


1. Bijuklic K, et al. The PROFI study (Prevention of Cerebral Embolization by Proximal Balloon Occlusion Compared to Filter Protection During Carotid Artery Stenting): a prospective randomized trial. *J Am Coll Cardiol*. 2012;59(15):1383-1389.

2. Bonati LH, et al. New ischaemic brain lesions on MRI after stenting or endarterectomy for symptomatic carotid stenosis: a substudy of the International Carotid Stenting Study (ICSS). *Lancet Neurol*. 2010 Apr;9(4):353-62.

3. Alpaslan A, et al. Transcarotid Artery Revascularization With Flow Reversal. J Endovasc Ther. 2017 Apr;24(2):265-270

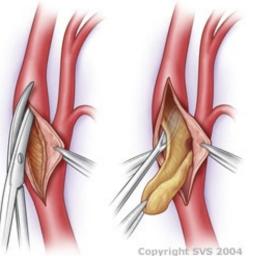


### **Evolution of Carotid Revasc**



Heart and Vascular Institute

JOHNS HOPKINS


OHNS HOPKINS

#### **Carotid Revascularization**

Carotid Endarterectomy (CEA)

Transfemoral Carotid Stenting (TFCAS)

#### TransCarotid Artery Revascularization (TCAR)



Filter

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, ALL RIGHTS RESERVED.





Heart and Vascular Institute

JOHNS HOPKINS

## **TCAR Outcomes**

#### **ROADSTER (N=208)**

- Prospective, single arm, multicenter trial of TCAR Procedure
- High surgical risk patients
  - Symptomatic stenosis ≥50% stenosis
  - Asymptomatic stenosis ≥70% stenosis

# 30-day stroke (ITT) = 1.4%

#### ROADSTER 2 (N=692)

- Prospective, open label, single arm, multicenter, post approval registry for patients undergoing TCAR
- High surgical risk patients
  - Symptomatic stenosis ≥50%
  - Asymptomatic stenosis ≥80%

30-day stroke (ITT) = 1.9%

Heart and Vascular Institute

Kwolek CJ et al. Vasc Surg. 2015 Nov;62(5):1227-34 Kashyap et al. Stroke. 2020 Sep;51(9):2620-2629.



JOHNS HOPKINS

### **TCAR: FDA Approval**

| U.S. Department of Health & Human Services |                                                                                                                                                                                                                                                                                                      | a A A                              |               |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------|
| DA U.S. FOOD & DRUG                        | Follow F                                                                                                                                                                                                                                                                                             | DA   En Español<br>SEARCH          | 73            |
| Home Food Drugs Medical Devices Radiation  | on-Emitting Products Vaccines, Blood & Biologics Animal & Vet                                                                                                                                                                                                                                        | erinary Cosmetics Tobacco Products | 100           |
| Premarket Approval (PMA)                   |                                                                                                                                                                                                                                                                                                      |                                    |               |
| FDA Home O Medical Devices O Databases     |                                                                                                                                                                                                                                                                                                      | 📇 🖬 🔛                              |               |
| ((-10))52(8)                               | Registration & Listing   Adverse Events   Recalls   PMA   HDE   Classification   Sta<br>  Radiation-Emitting Products   X-Ray Assembler   Medsun Reports   CLIA   TPLC                                                                                                                               | ndards                             |               |
| New Search                                 | Back to Set                                                                                                                                                                                                                                                                                          | arch Results                       |               |
| have changed. I<br>changes. The la         | cal device has supplements. The device description/function or indication n<br>Be sure to look at the supplements to get an up-to-date information on dev<br>beling included below is the version at time of approval of the original PM/<br>plement and may not represent the most recent labeling. | rice                               |               |
| Device                                     | ENROUTE TRANSCAROTID STENT SYSTEM                                                                                                                                                                                                                                                                    |                                    |               |
| Generic Nan                                | ne Stent, Carotid<br>SILK ROAD MEDICAL. INC                                                                                                                                                                                                                                                          |                                    |               |
| Applicant                                  | 1213 Innsbruck Drive<br>Sunnyvale, CA 94089                                                                                                                                                                                                                                                          |                                    |               |
| PMA Numbe                                  |                                                                                                                                                                                                                                                                                                      | _                                  |               |
| Date Receive                               |                                                                                                                                                                                                                                                                                                      | 5                                  |               |
| Decision Da                                | te 05/18/2015                                                                                                                                                                                                                                                                                        | •                                  |               |
| Product Coc                                |                                                                                                                                                                                                                                                                                                      |                                    |               |
| Docket Num                                 |                                                                                                                                                                                                                                                                                                      |                                    |               |
| Notice Date<br>Advisory<br>Committee       | 06/02/2015<br>Cardiovascular                                                                                                                                                                                                                                                                         |                                    |               |
| Clinical Trial                             | Is <u>NCT01685567</u>                                                                                                                                                                                                                                                                                |                                    |               |
| Expedited R<br>Granted?                    |                                                                                                                                                                                                                                                                                                      |                                    |               |
| Combination<br>Product                     | n <sub>No</sub>                                                                                                                                                                                                                                                                                      |                                    |               |
| Recalls                                    | CDRH Recalls                                                                                                                                                                                                                                                                                         |                                    |               |
| APPROVAL I<br>IS INDICATE                  | der Statement<br>FOR THE ENROUTE TRANSCAROTID STENT SYSTEM. THIS DEVICE<br>ID FOR USE IN CONJUNCTION WITH THE ENROUTE TRANSCAROTID<br>TECTION SYSTEM (NPS) FOR THE TREATMENT OF PATIENTS AT                                                                                                          |                                    |               |
|                                            |                                                                                                                                                                                                                                                                                                      |                                    | IOHNS HOPKINS |

MEDICINE

Heart and Vascular Institute

# **Original CMS Coverage - TCAR**

#### ONE risk factor qualifies patient for CMS high surgical risk status

- Age ≥75
- Prior head/neck surgery or irradiation
- Restenosis post CEA
- Contralateral occlusion
- Surgically inaccessible lesion
- Severe tandem lesions
- Bilateral stenosis requiring treatment
- Cervical spine immobility
- Uncontrolled diabetes
- LVEF <30%
- Chronic renal insufficiency (Creatinine ≥2.5 mg/dl)

- Need for open heart surgery
- MI >72hr & <6 weeks prior to procedure
- Permanent contralateral cranial nerve injury
- Severe pulmonary disease
- >2 diseased coronaries with ≥70% stenosis
- CHF with NYHA Class III or IV
- Need for major surgery (including vascular)
- Unstable angina
- Abnormal stress test
- Laryngeal palsy or laryngectomy

HSR, Symptomatic >50% stenosis
 HSR, Asymptomatic ≥80% stenosis

#### Covered through TCAR Surveillance Project (TSP)

#### HIGH RISK PATIENTS



Vascular Institute

Heart and

JOHNS HOPKINS

## **TCAR Anatomy**

#### Anatomic Requirements

- >5cm = Working distance from clavicle to bifurcation ("access to lesion")
- >6mm= CCA reference diameter
- CCA free of significant disease for safe sheath insertion and vessel occlusion

#### Lesion Morphology

- Circumferential calcium
- Fresh thrombus

Contraindicated





### **TCAR Surveillance Project**

|                                                                                                                                                                                                                                               | Sec. 10                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| NH) U.S. National Library of Med<br>ClinicalTrials.gov                                                                                                                                                                                        | icine<br>Find Studies ▼ About Studies ▼ Submit Studies ▼ Resources ▼ About Site ▼ <u>PRS Login</u>                  |
| Home > Search Results > Study R                                                                                                                                                                                                               | ecord Detail Save this study Saved Studies (3)                                                                      |
| SVS VQI TransCarotid Revaso                                                                                                                                                                                                                   | sularization Surveillance Project (VQI-TCAR)                                                                        |
|                                                                                                                                                                                                                                               | ClinicalTrials.gov Identifier: NCT02850588                                                                          |
| The safety and scientific validity of this study is the responsibility of the study study does not mean it has been evaluated by the U.S. Federal Governmen of clinical studies and talk to your health care provider before participating. F | t. Know the risks and potential benefits                                                                            |
|                                                                                                                                                                                                                                               | View this study on Beta.ClinicalTrials.gov                                                                          |
| Sponsor:<br>Society for Vascular Surgery Patient Safety Organization<br>Information provided by (Responsible Party):<br>Society for Vascular Surgery Patient Safety Organization                                                              |                                                                                                                     |
| Study Type <b>()</b> :                                                                                                                                                                                                                        | Observational [Patient Registry]                                                                                    |
| Estimated Enrollment () :                                                                                                                                                                                                                     | 60000 participants                                                                                                  |
|                                                                                                                                                                                                                                               | Case-Control                                                                                                        |
| Time Perspective:                                                                                                                                                                                                                             | Prospective                                                                                                         |
| Target Follow-Up Duration:                                                                                                                                                                                                                    | 1 Year                                                                                                              |
| Official Title:                                                                                                                                                                                                                               | TransCarotid Revascularization Surveillance Project of the Society for Vascular Surgery Vascular Quality Initiative |
| Actual Study Start Date ():                                                                                                                                                                                                                   | November 1, 2016                                                                                                    |
| Estimated Primary Completion Date ():                                                                                                                                                                                                         | December 31, 2026                                                                                                   |
| Estimated Study Completion Date ():                                                                                                                                                                                                           | December 31, 2027                                                                                                   |

## **TCAR Publications**

| Pub Med <sup>®</sup> | "transcarotid artery revascularization" | × Search                                                                |
|----------------------|-----------------------------------------|-------------------------------------------------------------------------|
|                      | Advanced Create alert Create RSS        | User Guide                                                              |
|                      | Save Email Send to                      | Sorted by: Most recent $\downarrow_{-}^{-}$ Display options 🇱 $\bullet$ |
| RESULTS BY YEAR      | 179 results                             | $\ll$ $\langle$ Page 1 of 18 $\rangle$ $\gg$                            |
| x L                  |                                         |                                                                         |
|                      |                                         |                                                                         |
|                      |                                         |                                                                         |
| 2017                 |                                         | 2023                                                                    |

#### Majority based on VQI-TSP data



OHNS HOPKING



## **TCAR Surveillance Project**

> Ann Surg. 2022 Aug 1;276(2):398-403. doi: 10.1097/SLA.00000000004496. Epub 2020 Sep 15.

TransCarotid Revascularization With Dynamic Flow Reversal Versus Carotid Endarterectomy in the Vascular Quality Initiative Surveillance Project

Mahmoud B Malas <sup>1</sup>, Hanaa Dakour-Aridi <sup>1</sup>, Vikram S Kashyap <sup>2</sup>, Jens Eldrup-Jorgensen <sup>3</sup>, Grace J Wang <sup>4</sup>, Raghu L Motaganahalli <sup>5</sup>, Jack L Cronenwett <sup>6</sup>, Marc L Schermerhorn <sup>7</sup>

- TCAR vs. CEA
- 2016-2019
- 53,869 patients
- Propensity matched

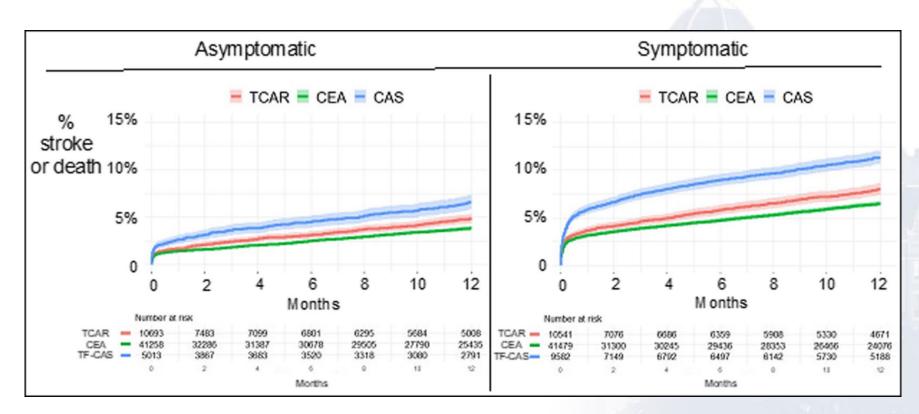
|           | ospital<br>come    | CEA<br>(N=6384) | TCAR<br>(N=6384 | RR (95% CI)      |
|-----------|--------------------|-----------------|-----------------|------------------|
| Strok     | ke/death           | 1.6%            | 1.6%            | 1.01 (0.77–1.33) |
| Deat      | h                  | 0.3%            | 0.4%            | 1.14 (0.64–2.02) |
| Ipsila    | iteral stroke      | 1.0%            | 1.2%            | 1.21 (0.87–1.68) |
| Муос      | cardial infarction | 0.9%            | 0.5%            | 0.53 (0.35–0.83) |
| Strok     | e/death/MI         | 2.4%            | 2.0%            | 0.85 (0.67–1.07) |
| Hear Cran | ial nerve injury   | 2.7%            | 0.4%            | 0.14 (0.08–0.23) |

### **TCAR Surveillance Project**

> Ann Surg. 2022 Aug 1;276(2):398-403. doi: 10.1097/SLA.00000000004496. Epub 2020 Sep 15.

TransCarotid Revascularization With Dynamic Flow Reversal Versus Carotid Endarterectomy in the Vascular Quality Initiative Surveillance Project

Mahmoud B Malas <sup>1</sup>, Hanaa Dakour-Aridi <sup>1</sup>, Vikram S Kashyap <sup>2</sup>, Jens Eldrup-Jorgensen <sup>3</sup>, Grace J Wang <sup>4</sup>, Raghu L Motaganahalli <sup>5</sup>, Jack L Cronenwett <sup>6</sup>, Marc L Schermerhorn <sup>7</sup>


1.00 Freedom from ipsilateral stroke or death, % HR: 1.09 (0.87-1.36) 0.75 0.50 0 90 180 270 365 Time (days) Number at risk 2480 CEA 6384 2536 2341 2302 **TCAR 6384** 1311 1242 1132 1104 Carotid Endarterectomy Transcarotid artery revascularization

- TCAR vs. CEA
- 2016-2019
- 53,869 patients
- Propensity matched



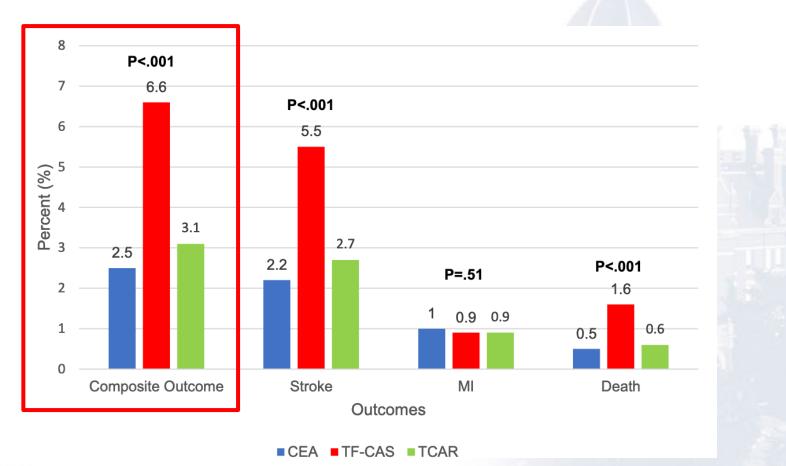
Heart and Vascular Institute

## **TCAR by Symptom Status**



CEA vs. TCAR: HR 1.04 (0.77, 2.80)

CEA vs. TCAR: HR 1.30 (1.04, 1.64)


Heart and Vascular Institute

OHINS HOPKINS

Columbo et al. J Am Heart Assoc. 2022 Oct;11(19):e024964.



### **TCAR for Octogenarians**



Heart and Vascular Institute

OHINS HOPKINS

Kibrik et al., J Vasc Surg. 2022 Sep;76(3):769-777.e2.



### **TCAR for Octogenarians**



#### Table II. Multivariable logistic regression analyses of perioperative (30-day) outcomes stratified by procedure<sup>a</sup>

| Perioperative outcome                                                                                                                                                                                                               | CEA        | TCAR             |  | TF-CAS           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|--|------------------|
| Stroke                                                                                                                                                                                                                              | 1.00 (Ref) | 1.53 (1.19-1.97) |  | 3.34 (2.61-4.29) |
| Myocardial infarction                                                                                                                                                                                                               | 1.00 (Ref) | 0.59 (0.40-0.87) |  | 0.56 (0.34-0.90) |
| Death                                                                                                                                                                                                                               | 1.00 (Ref) | 1.29 (0.82-2.02) |  | 3.56 (2.45-5.16) |
| Composite stroke/death                                                                                                                                                                                                              | 1.00 (Ref) | 1.49 (1.18-1.87) |  | 3.35 (2.65-4.23) |
| CEA, Carotid endarterectomy; <i>Ref</i> , reference; <i>TCAR</i> , transcarotid artery revascularization; <i>TF-CAS</i> , transfemoral carotid artery stenting.<br>Data presented as adjusted odds ratio (95% confidence interval). |            |                  |  |                  |

<sup>a</sup>The full multivariable models are provided in Supplementary Tables II to V (online only).



A JOHNS HOPKINS

Kibrik et al., J Vasc Surg. 2022 Sep;76(3):769-777.e2.



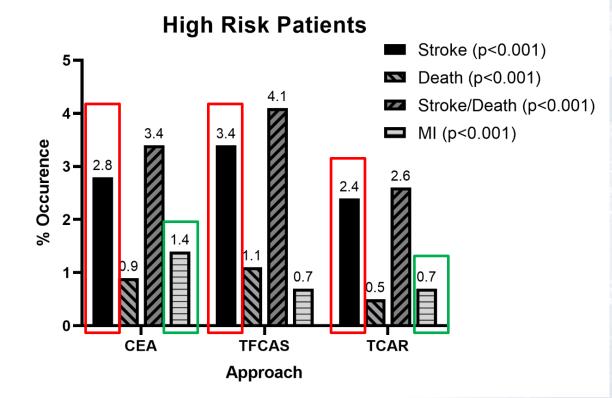
### **TCAR for Octogenarians**



**Table IV.** Multivariable logistic regression analyses of perioperative (30-day) stroke/death stratified by procedure, symptom status, and degree of stenosis

| Variable                | CEA        | TCAR             | TF-CAS           |
|-------------------------|------------|------------------|------------------|
| Symptomatic patients    | 1.00 (Ref) | 1.19 (0.89-1.58) | 2.59 (2.01-3.34) |
| Asymptomatic patients   | 1.00 (Ref) | 2.04 (1.41-2.94) | 4.36 (3.07-6.20) |
| Moderate-grade stenosis | 1.00 (Ref) | 1.35 (0.99-1.83) | 3.22 (2.28-4.54) |
| High-grade stenosis     | 1.00 (Ref) | 1.49 (1.11-2.05) | 3.35 (2.41-4.79) |
|                         |            | TEOLO            |                  |

CEA, Carotid endarterectomy; Ref, reference; TCAR, transcarotid artery revascularization; TF-CAS, transfemoral carotid artery stenting. Data presented as adjusted odds ratio (95% confidence interval).




A JOHNS HOPKINS

Kibrik et al., J Vasc Surg. 2022 Sep;76(3):769-777.e2.



## **TCAR for High-Risk Patients**



Heart and Vascular Institute

JOHNS HOPKINS

Zhang et al., J Vasc Surg. 2022 Aug;76(2):474-481.e3.



# **TCAR for High-Risk Patients**

 Table II.
 Relationship between approach and adverse outcomes among Centers for Medicare & Medicaid Services (CMS)
 high-risk patients, after stratification by approach

|                           | Unadjuste        | Unadjusted     |                  | ł              |
|---------------------------|------------------|----------------|------------------|----------------|
|                           | OR (95% CI)      | <i>P</i> value | OR (95% CI)      | <i>P</i> value |
| Stroke <sup>a</sup>       |                  |                |                  |                |
| Approach                  |                  |                |                  |                |
| CEA                       | Ref              |                | Ref              |                |
| TFCAS                     | 1.25 (1.05-1.48) | .013           | 1.23 (1.03-1.46) | .021           |
| TCAR                      | 0.86 (0.72-1.03) | .103           | 0.82 (0.68-0.99) | .037           |
| Death <sup>b</sup>        |                  |                |                  |                |
| Approach                  |                  |                |                  |                |
| CEA                       | Ref              |                | Ref              |                |
| TFCAS                     | 1.14 (0.85-1.54) | .378           | 1.20 (0.89-1.62) | .241           |
| TCAR                      | 0.49 (0.34-0.70) | <.001          | 0.50 (0.35-0.72) | <.001          |
| Stroke/death <sup>c</sup> |                  |                |                  |                |
| Approach                  |                  |                |                  |                |
| CEA                       | Ref              |                | Ref              |                |
| TFCAS                     | 1.24 (1.06-1.45) | .008           | 1.20 (1.03-1.41) | .021           |
| TCAR                      | 0.77 (0.65-0.91) | .003           | 0.73 (0.61-0.86) | <.001          |
| MI <sup>d</sup>           |                  |                |                  |                |
| Approach                  |                  |                |                  |                |
| CEA                       | Ref              |                | Ref              |                |
| TFCAS                     | 0.49 (0.36-0.67) | <.001          | 0.45 (0.33-0.62) | <.001          |
| TCAR                      | 0.48 (0.36-0.65) | <.001          | 0.46 (0.33-0.62) | <.001          |

Heart and Vascular Institute

A JOHNS HOPKINS

Zhang et al., J Vasc Surg. 2022 Aug;76(2):474-481.e3.



## **TCAR for High-Risk Patients**

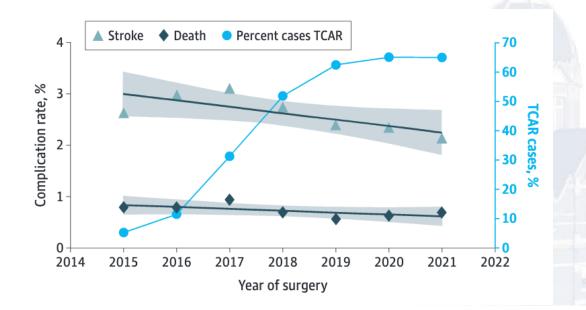



Table. Association of Year of Surgery and Operative Approach With In-Hospital Complications Among High-risk Patients Undergoing Carotid Artery Stenting, Vascular Quality Initiative 2015-2021

| Stroke                    |                      |                      | Death                             |                      |                      |                                       |  |
|---------------------------|----------------------|----------------------|-----------------------------------|----------------------|----------------------|---------------------------------------|--|
|                           | aOR (95% CI)         |                      | Excess benefit<br>explained model | aOR (95% CI)         |                      | Excess benefit<br>- explained model 2 |  |
| Factor                    | Model 1 <sup>a</sup> | Model 2 <sup>b</sup> | 2 vs 1, %                         | Model 1 <sup>a</sup> | Model 2 <sup>b</sup> | vs 1, %                               |  |
| Year of surgery, per year | 0.90 (0.87-0.94)     | 0.93 (0.89-0.96)     | 20                                | 0.88 (0.82-0.95)     | 0.96 (0.89-1.03)     | 67                                    |  |
| TCAR (vs TFCAS)           | NA                   | 0.75 (0.65-0.88)     | 30                                | NA                   | 0.42 (0.29-0.61)     | 67                                    |  |

Heart and Vascular Institute

OHNS HOPKINS

Stonko et al., JAMA Surg. 2023 Apr 12;e228384.



## What About Standard Risk?

|               |                     |                  |                                     | -               |
|---------------|---------------------|------------------|-------------------------------------|-----------------|
| JVS           | Journal of Vascular | Surgery          | SVS Society for<br>Vascular Surgery |                 |
| Access provid | ded by JOHNS HO     | PKINS UNIVERSIT  | Y                                   |                 |
|               | S2: PLENARY SE      | SSION 2   VOLUME | 74, ISSUE 3, E27-E28, SEF           | PTEMBER 01, 202 |
|               | Expansion           | of Transca       | rotid Artery Rev                    | vasculariza     |

Expansion of Transcarotid Artery Revascularization to Standard Risk Patients for Treatment of Carotid Artery Stenosis

Patric Liang - Jack Cronenwett - Eric Secemsky - ... Vikram S. Kashyap - Raghu L. Motaganahalli - Marc L. Schermerhorn - Show all authors

DOI: https://doi.org/10.1016/j.jvs.2021.06.048 =

> JAMA Neurol. 2023 Mar 20;e230285. doi: 10.1001/jamaneurol.2023.0285. Online ahead of print.

Risk of Stroke, Death, and Myocardial Infarction Following Transcarotid Artery Revascularization vs Carotid Endarterectomy in Patients With Standard Surgical Risk

```
Patric Liang <sup>1</sup>, Jack L Cronenwett <sup>2</sup>, Eric A Secemsky <sup>3</sup>, Jens Eldrup-Jorgensen <sup>4</sup>,
Mahmoud B Malas <sup>5</sup>, Grace J Wang <sup>6</sup>, Brian W Nolan <sup>4</sup>, Vikram S Kashyap <sup>7</sup>,
Raghu L Motaganahalli <sup>8</sup>, Marc L Schermerhorn <sup>1</sup>
```

Affiliations + expand PMID: 36939697 PMCID: PMC10028539 (available on 2024-03-20) DOI: 10.1001/jamaneurol.2023.0285 > J Vasc Surg. 2022 Aug;76(2):474-481.e3. doi: 10.1016/j.jvs.2022.03.860. Epub 2022 Mar 31.

#### Transcarotid artery revascularization is associated with similar outcomes to carotid endarterectomy regardless of patient risk status

George Q Zhang <sup>1</sup>, Sanuja Bose <sup>2</sup>, David P Stonko <sup>3</sup>, Christopher J Abularrage <sup>4</sup>, Devin S Zarkowsky <sup>5</sup>, Caitlin W Hicks <sup>6</sup>

Affiliations + expand

PMID: 35367564 PMCID: PMC9329175 (available on 2023-08-01) DOI: 10.1016/j.jvs.2022.03.860



Heart and Vascular Institute

## What About Standard Risk?

|        | OR (95% CI)      |                                         |
|--------|------------------|-----------------------------------------|
| Stroke |                  |                                         |
| CEA    | Ref              |                                         |
| TFCAS  | 1.60 (1.37-1.86) |                                         |
| TCAR   | 1.05 (0.84-1.31) | Adjusted for age, sex,                  |
| Death  |                  | smoking status,<br>hypertension,        |
| CEA    | Ref              | diabetes, coronary                      |
| TFCAS  | 3.35 (2.47-4.54) | artery disease, and<br>congestive heart |
| TCAR   | 1.58 (0.97-2.56) | failure stage I/II                      |
| МІ     |                  |                                         |
| CEA    | Ref              |                                         |
| TFCAS  | 1.77 (1.54-2.04) |                                         |
| TCAR   | 1.11 (0.91-1.37) |                                         |

Heart and Vascular Institute

OHNS HOPKINS

Zhang et al. J Vasc Surg. 2022 Aug;76(2):474-481.e3



## **TCAR for Standard Risk**

TCAR vs. CEA

- 2016-2019
- 38,025 patients

Propensity matched

Table 3. Thirty-Day and 1-Year Outcomes After Transcarotid Artery Stenting or Carotid Endarterectomy Stenting in a Propensity Score–Matched Study Population Using Kaplan-Meier Estimates

|                                                                 | %                               |                           |                                    |                           |            |
|-----------------------------------------------------------------|---------------------------------|---------------------------|------------------------------------|---------------------------|------------|
|                                                                 | Transcarotid<br>artery stenting | Carotid<br>endarterectomy | Absolute difference, %<br>(95% CI) | Relative risk<br>(95% CI) | P<br>value |
| 30-d Stroke/death/MI<br>and 1-y ipsilateral stroke <sup>a</sup> | 3.0                             | 2.6                       | 0.40 (-0.43 to 1.24)               | 1.14 (0.87 to 1.50)       | .34        |
| 30-d                                                            |                                 |                           |                                    |                           |            |
| Stroke/death                                                    | 1.8                             | 1.5                       | 0.34 (-0.18 to 0.90)               | 1.24 (0.90 to 1.71)       | .21        |
| Stroke                                                          | 1.6                             | 1.1                       | 0.42 (-0.06 to 0.93)               | 1.38 (0.97 to 1.96)       | .07        |
| Death                                                           | 0.3                             | 0.4                       | -0.07 (-0.33 to 0.18)              | 0.84 (0.42 to 1.69)       | .62        |
| Stroke/death/MI <sup>a</sup>                                    | 2.2                             | 2.1                       | 0.15 (-0.48 to 0.74)               | 1.07 (0.81 to 1.42)       | .63        |
| 1-y                                                             |                                 |                           |                                    |                           |            |
| Ipsilateral stroke                                              | 1.6                             | 1.1                       | 0.52 (0.03 to 1.08)                | 1.49 (1.05 to 2.11)       | .02        |
| Death                                                           | 2.6                             | 2.5                       | 0.13 (-0.18 to 0.33)               | 1.04 (0.78 to 1.39)       | .67        |

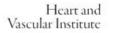
Heart and Vascular Institute

DHINS HOPKINS

Liang et al., JAMA Neurol. 2023 Mar 20;e230285.



### **Standard Risk Approval**






4

#### Silk Road Medical Announces FDA Approval of Expanded Indications for the ENROUTE<sup>®</sup> Transcarotid Stent System

SUNNYVALE, Calif. – May 2, 2022 – Silk Road Medical, Inc. (Nasdaq: SILK), a company focused on reducing the risk of stroke and its devastating impact, today announced that the U.S. Food and Drug Administration (FDA) approved expanded indications for the ENROUTE stent to include patients at standard risk for adverse events from carotid endarterectomy (CEA). Previously, the stent was approved for use only in patients with anatomic or physiological criteria that put them at high risk of complications from more invasive surgical procedures.

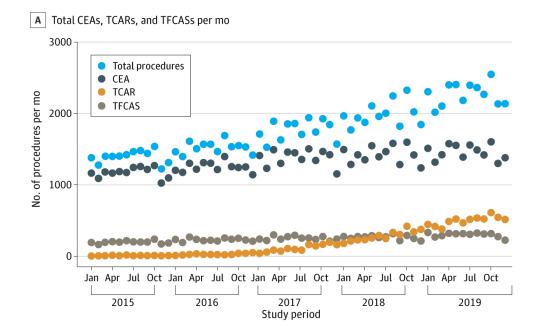




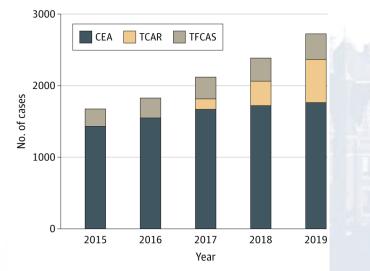
DHNS HOPKINS

September 16, 2022

#### Use of Transcarotid Artery Revascularization, Transfemoral Carotid Artery Stenting, and Carotid Endarterectomy in the US From 2015 to 2019


David P. Stonko, MD, MS<sup>1,2</sup>; Earl Goldsborough III, BS<sup>3</sup>; Pavel Kibrik, DO<sup>4</sup>; <u>et al</u>

» Author Affiliations ∣ Article Information


JAMA Netw Open. 2022;5(9):e2231944. doi:10.1001/jamanetworkopen.2022.31944

- VQI Data
- N=108,676
- Jan 2015 to Dec 2019





#### **C** Total included cases per year, by approach



Heart and Vascular Institute

INTERNA TOPICAL

JAMA Netw Open. 2022;5(9):e2231944. doi:10.1001/jamanetworkopen.2022.31944

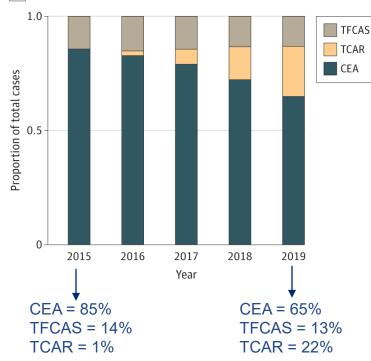
6

58

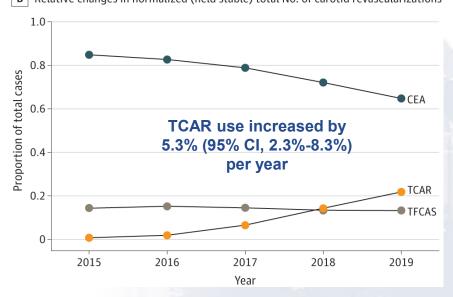


September 16, 2022

#### Use of Transcarotid Artery Revascularization, Transfemoral Carotid Artery Stenting, and Carotid Endarterectomy in the US From 2015 to 2019


David P. Stonko, MD, MS<sup>1,2</sup>; Earl Goldsborough III, BS<sup>3</sup>; Pavel Kibrik, DO<sup>4</sup>; <u>et al</u>

» Author Affiliations ∣ Article Information


JAMA Netw Open. 2022;5(9):e2231944. doi:10.1001/jamanetworkopen.2022.31944

- N=108,676
- Jan 2015 to Dec 2019





A Proportion of carotid revascularizations by approach over time



B Relative changes in normalized (held stable) total No. of carotid revascularizations

Heart and Vascular Institute

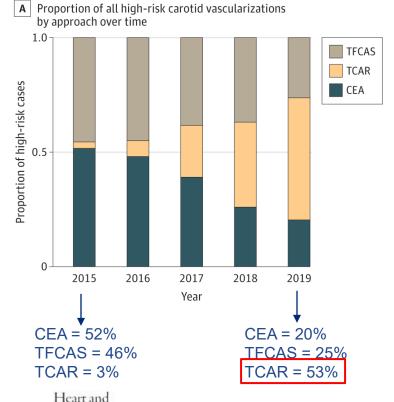
**ALL PATIENTS** 

6

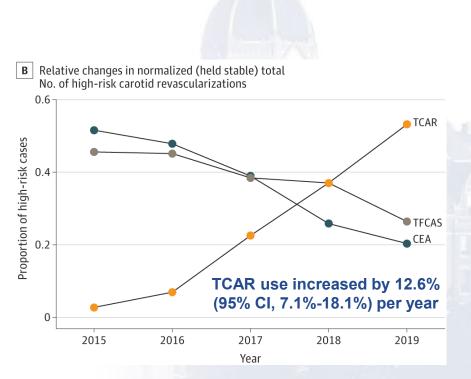


September 16, 2022

#### Use of Transcarotid Artery Revascularization, Transfemoral Carotid Artery Stenting, and Carotid Endarterectomy in the US From 2015 to 2019


David P. Stonko, MD, MS<sup>1,2</sup>; Earl Goldsborough III, BS<sup>3</sup>; Pavel Kibrik, DO<sup>4</sup>; <u>et al</u>

» Author Affiliations ∣ Article Information


JAMA Netw Open. 2022;5(9):e2231944. doi:10.1001/jamanetworkopen.2022.31944

VQI Data

- N=108,676
- Jan 2015 to Dec 2019



Vascular Institute



HIGH RISK PATIENTS



DHINS HOPKING

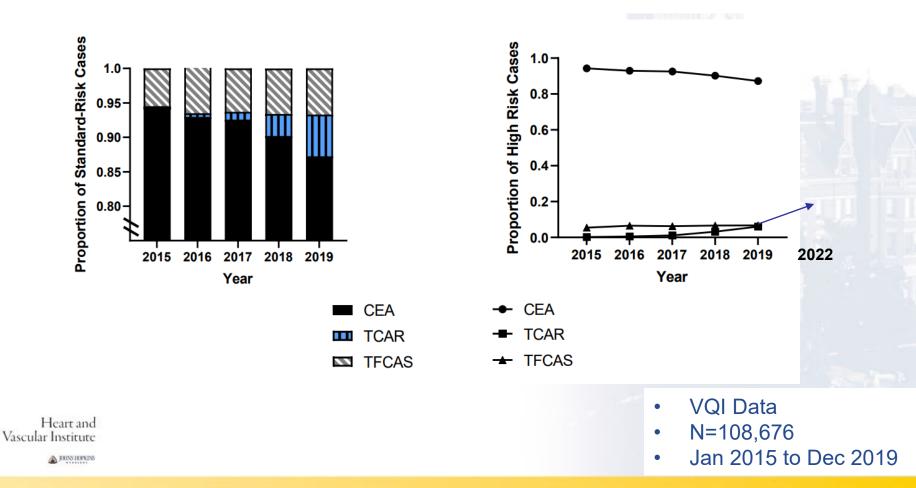
f

## **TCAR is Dominant for High-Risk**

|       | RRR (95% CI)      |                 |  |  |  |
|-------|-------------------|-----------------|--|--|--|
|       | High-Risk Status  | Year            |  |  |  |
| CEA   | Reference         | Reference       |  |  |  |
| TFCAS | 14.1 (11.9, 16.7) | 1.1 (1.08, 1.2) |  |  |  |
| TCAR  | 36.1 (29.4, 44.7) | 2.4 (2.2, 2.7)  |  |  |  |

Multinomial regression adjusting for age, sex, race and ethnicity, insurance status, comorbidities (hypertension, coronary artery disease, congestive heart failure, chronic obstructive pulmonary disease, diabetes, and chronic kidney disease or hemodialysis), functional status, smoking status, high-risk vs standard-risk status, degree of, symptomatic status, and year of surgery.

Heart and Vascular Institute


JOHNS HOPKINS

Stonko et al. JAMA Netw Open. 2022;5(9):e2231944.



#### **Standard Risk Adoption**

#### **Standard-Risk Carotid Revascularizations**

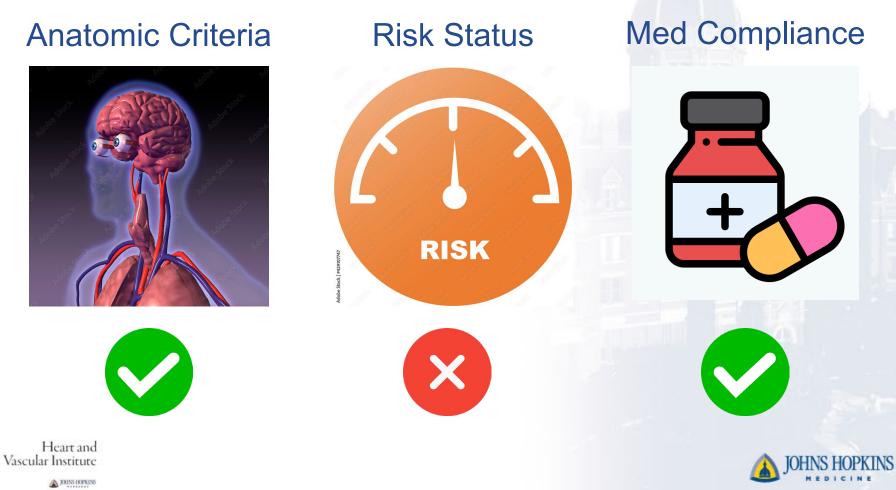


## **TCAR Limitations**

- Anatomic requirements  $\rightarrow$  "cherry-picking" cases?
- Close oversight of cases by industry → ? long term sustainability
- Limited comparative data  $\rightarrow$  data biases
  - Roadster 1, 2, 3 data
  - VQI-TSP
  - RCT not financially viable (likely)
- Emerging technology / applications off-IFU
  - Hard to study

Heart and Vascular Institute






# Is There Bias in TCAR Data?

| Bias Type             | Description                                         |
|-----------------------|-----------------------------------------------------|
| Selection             | Different prognoses between groups                  |
| Channeling            | Treatment decision based on prognostic features     |
| Chronology            | Different timing of interventions                   |
| Detection             | Nonuniform measuring methods                        |
| Ascertainment         | Different availability of data / outcomes reporting |
| Performance           | Nonuniform intervention                             |
| Publication           | Distorted data reporting                            |
| Optimism              | Underlying belief that new is better                |
| Conflicts of Interest | Competing interests                                 |



## **Selection & Channeling Biases**



### **Detection & Ascertainment Biases**

#### **Stroke Definition**

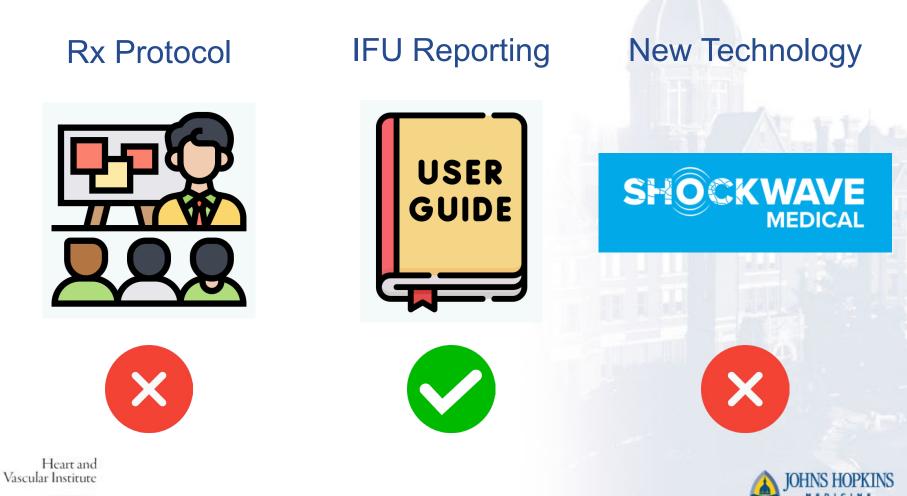
Data Capture

ROADSTER 1/2 SVS VQI

#### Claims: 37215

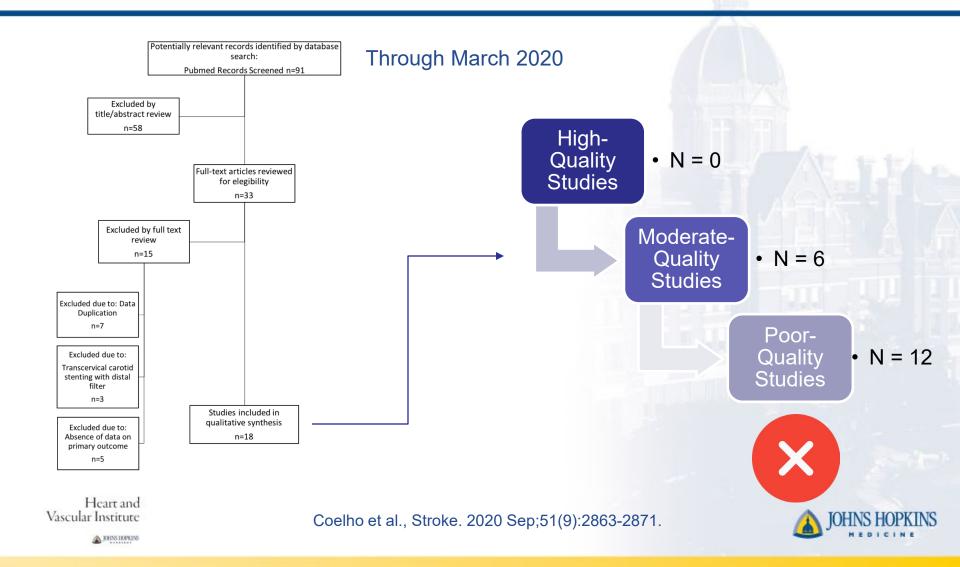


#### Data Reporting






Heart and Vascular Institute


DEINS HOPKINS

### **Performance Bias**



A JOHNS IKOPAINS

### **Publication Bias**



### **Optimism and COI Biases**



A JOHNS HOPKINS

## **TCAR vs. CEA in Practice**

#### Clear advantage CEA

- Low bifurcation (CCA <5cm)
- Significant CCA disease
- Lesions with prohibitive calcium
- ICA diameter >9mm or <4mm</li>
- Liquid thrombus

#### Clear advantage TCAR

- High bifurcation
- Hostile neck (radiation, immobility)
- Reoperative site (CEA restenosis)

**TF-CAS** 

- Frail patients
- (Patient prefers less invasive procedure)

Unfavorable anatomy

Heart and Vascular Institute

OHNS HOPKING

## **TCAR vs. CEA in Practice**

#### Clear advantage CEA

- Low bifurcation (CCA <5cm)</li>
- Significant CCA disease
- Lesions with prohibitive calcium
- ICA diameter >9mm or <4mm</li>
- Liquid thrombus

#### **Clear advantage TCAR**

- High bifurcation
- Hostile neck (radiation, immobility)
- Reoperative site (CEA restenosis)
- Frail patients
- (Patient prefers less invasive procedure)

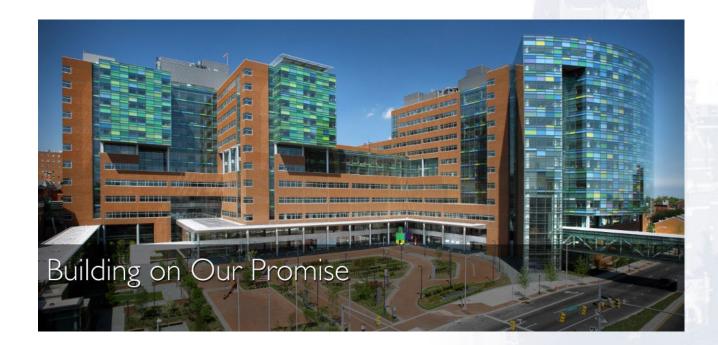
Heart and Vascular Institute

JOHNS HOPKING

Everything Else → TBD



### Conclusions


- TCAR adoption has increased dramatically since 2015
- In general, TCAR > TFCAS
- TCAR = CEA for short term outcomes
  - TCAR ?> CEA for high-risk & symptomatic patients
  - VQI data suggests at least equivalency
- Longer term outcomes (and ideally an RCT) for CEA vs. TCAR needed



Heart and Vascular Institute

OHNS HOPKINS

#### **Thank You**



@CaitlinWHicks@HopkinsSurgery@JHHVascular

